Gujarati
Hindi
3 and 4 .Determinants and Matrices
normal

The equation $\left| {\begin{array}{*{20}{c}}{{{(1 + x)}^2}}&{{{(1 - x)}^2}}&{ - \,(2 + {x^2})}\\{2x + 1}&{3x}&{1 - 5x}\\{x + 1}&{2x}&{2 - 3x}\end{array}} \right|$ $+$ $\left| {\begin{array}{*{20}{c}}{{{(1 + x)}^2}}&{2x + 1}&{x + 1}\\{{{(1 - x)}^2}}&{3x}&{2x}\\{1 - 2x}&{3x - 2}&{2x - 3}\end{array}} \right|$ $= 0$

Ahas no real solution
Bhas $4$ real solutions
Chas two real and two non-real solutions
Dhas infinite number of solutions , real or non-real

Solution

$1^{st}$ two columns of $1^{st}$ determinant are same as $1^{st}$ two rows of $2^{nd}$. Hence transpose the $2^{nd}$. Add the two determinants and use $C_1 \rightarrow C_1 + C_3$ ==> $D = 0$
Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.