The equation $\left| {\begin{array}{*{20}{c}}{{{(1 + x)}^2}}&{{{(1 - x)}^2}}&{ - \,(2 + {x^2})}\\{2x + 1}&{3x}&{1 - 5x}\\{x + 1}&{2x}&{2 - 3x}\end{array}} \right|$ $+$ $\left| {\begin{array}{*{20}{c}}{{{(1 + x)}^2}}&{2x + 1}&{x + 1}\\{{{(1 - x)}^2}}&{3x}&{2x}\\{1 - 2x}&{3x - 2}&{2x - 3}\end{array}} \right|$ $= 0$

  • A
    has no real solution
  • B
    has $4$ real solutions
  • C
    has two real and two non-real solutions
  • D
    has infinite number of solutions , real or non-real

Similar Questions

The system of equations $kx + y + z =1$ $x + ky + z = k$ and $x + y + zk = k ^{2}$ has no solution if $k$ is equal to

  • [JEE MAIN 2021]

If $\left| {\,\begin{array}{*{20}{c}}{x + 1}&3&5\\2&{x + 2}&5\\2&3&{x + 4}\end{array}\,} \right| = 0$, then $ x =$

Evaluate the determinants

$\left|\begin{array}{ccc}
3 & -4 & 5 \\
1 & 1 & -2 \\
2 & 3 & 1
\end{array}\right|$

Let $\alpha $ and $\beta $ be the roots of the equation $x^2 + x + 1 = 0.$ Then for $y \ne 0$ in $R,$ $\left| {\begin{array}{*{20}{c}}
{y\, + \,1}&\alpha &\beta \\
\alpha &{y\, + \,\beta }&1\\
\beta &1&{y\, + \,\alpha }
\end{array}} \right|$ is equal to

  • [JEE MAIN 2019]

The system of equations $(\sin\theta ) x + 2z = 0$ , $(\cos\theta ) x + (\sin\theta )y = 0$ , $(\cos\theta )y + 2z = a$ has